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We investigate the influence of noise upon the dynamics of the current density distribution in a model of a
semiconductor nanostructure, namely, a double barrier resonant tunneling diode. We fix the parameters of the
device below the Hopf bifurcation, where the only stable state of the system is a spatially inhomogeneous
“filamentary” steady state. We show that the addition of weak Gaussian white noise to the system gives rise to
spatially inhomogeneous oscillations that can be quite coherent. As the noise intensity grows, the oscillations
tend to become more and more spatially homogeneous, while simultaneously the temporal correlation of the
oscillations decreases. Thus, while on one hand noise destroys temporal coherence, on the other hand it
enhances the spatial coherence of the current density pattern.
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I. INTRODUCTION

During recent years the double barrier resonant tunneling
diode sDBRTd has become an object of great research inter-
est f1g. It was shown that charge accumulation in such a
semiconductor nanostructure provides an electrostatic feed-
back that, together with resonant tunneling through the en-
ergy barriers, induces strongly nonlinear Z-shaped current-
voltage characteristicsf2g. From a practical point of view,
the latter makes the DBRT promising for applications as a
key element of powerful semiconductor microwave genera-
tors. The characteristic feature of the DBRT is intrinsic bi-
stability f2g, i.e., for a range of voltages it depends upon the
initial conditions whether a state of high or low current den-
sity is observed. Such a bistability creates unique conditions
for a variety of interesting phenomena, including lateral spa-
tiotemporal pattern formation of the current densityf3–10g.
This makes the study of the DBRT very attractive also from
the viewpoint of nonlinear dynamics. While the general im-
portance of noise is well knownf11g, the effects of noise
upon the spatiotemporal dynamics of the current density pat-
terns have been less studied.

In reality any process is inevitably influenced by random
fluctuations. For a long time it was widely believed that the
effect of noise is only destructive, smearing out any deter-
ministic dynamics. However, recently noise has been found
to evoke a very nontrivial, constructive response in nonlinear
systems. It was shown, for instance, that random fluctuations
are able to induce quite coherent patterns in extended media
f12g, to maintain existing patternsf13g, and even to support
wave propagationf14g. Although noise-induced phenomena
were also found in semiconductor lasersf15,16g, the effect of
noise on charge transport in semiconductors is still an open
question. The aim of the present work is to study how noise
can influence current density patterns in a semiconductor
nanostructure, namely, the DBRT.

The paper has the following structure. After this introduc-
tion the DBRT model and the results of our simulations are

presented in Sec. II. Conclusions are drawn in Sec. III. In the
Appendix some details of the model equations are given.

II. PATTERN FORMATION IN THE NOISY
DBRT MODEL

Since the measurement of the local current density distri-
bution in real devices is technically a very complicated task,
the mathematical modeling still remains one of the basic
methods to study pattern formation involving the charge car-
rier dynamics in semiconductor nanostructures. For this pur-
pose we use a model for the DBRT suggested inf8g and add
two sources of random fluctuations:

]asx,td
]t

= fsa,ud +
]

]x
SDsad

]a

]x
D + Dajsx,td,

«
]ustd

]t
= U0 − u − rk jl + Duhstd. s1d

All quantities in this model are dimensionless. In terms of
nonlinear dynamics, this is a reaction-diffusion model of
activator-inhibitor type, wherea is the activator andu is the
inhibitor. The dynamical variableasx,td describes the charge
carrier density inside the quantum well, which depends on
time and space. The second variableustd is the voltage drop
across the device and depends only on time. The nonlinear
function f models the net tunneling rate of the electrons
through the two energy barriers into and out of the quantum
well, andDsad is the effective diffusion coefficient, describ-
ing the diffusion of the electrons within the quantum well
along the x-direction perpendicular to the current flow,
jsa,ud= 1

2ffsa,ud+2ag describes the local current density in
the device andk jl=s1/Lde0

Lj dx gives the total current
through the device. The system is assumed to satisfy Neu-
mann boundary conditions and its width is fixed at a value of
L=30. The first Eq.s1d is the local balance equation of the
charge in the quantum well, and the second equation repre-
sents Kirchhoff’s law of the circuit in which the device is
operated. The external bias voltageU0, the dimensionless
load resistancer, and the time-scale ratio« of the dynamics*Electronic address: schoell@physik.tu-berlin.de
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of u anda are parameters;« plays the role of a bifurcation
parameter which determines the stability of the fixed points
in the systemf10g. Physically,«=RC/ta is related to the load
resistanceR, and the parallel capacitanceC of the attached
circuit, normalized by the tunneling timeta. The explicit
form of the functionsfsa,ud and Dsad can be found in the
Appendix, and a discussion of the various deterministic bi-
furcation scenarios is given inf8,10g.

Here we want to investigate the system under the influ-
ence of noise. For this purpose we have added the two noise
termsDajsx,td andDuhstd, whereDa andDu define the noise
intensities in the corresponding variables andj and h are
uncorrelated Gaussian white noise sources:

kjsx,tdl = khstdl = 0 sx P f0,Lgd,

kjsx,tdjsx8,t8dl = dsx − x8ddst − t8d,

khstdhst8dl = dst − t8d. s2d

The term Duhstd represents noise in the applied voltage,
whereasDajsx,td describes fluctuations of the local current
density which could be caused by effective contributions,
e.g., of thermal fluctuations and shot noisef17g.

First consider the noise-free caseDu=Da=0. For this pur-
pose we fix «=6.2 slightly below the Hopf bifurcation,
which occurs at«<6.4. In Fig. 1 the null isoclines of the
system are plotted in the current-voltage projection of the
originally infinite-dimensional phase space. If the system is
prepared in a completely homogeneous initial stateasx,0d
=a0 and no spatially inhomogeneous fluctuations are taken
into accountsDa=0d the systems1d loses its space depen-
dence and can be reduced to a set of two ordinary differential
equations for which the null isoclineȧ=0 under this homo-
geneous condition can be calculated analytically from the
zeros of fsa,ud. The intersection with the load linesnull
isocline u̇=0d determines the homogeneous fixed point
marked “H” in Fig. 1. Although linear stability analysis for
this reduced system tells us that this is a stable focus for the
parameters chosen and«,16.6 with frequency fhom

=0.2639 at«=6.2, in the complete space-dependent system
s1d this fixed point isnot stable but still corresponds to a
homogeneous steady state.

If we drop the condition of space independence and return
to the original full system, the additional null isoclineȧ=0
with inhomogeneousasx,td can be calculated numerically.
Once again the intersection of the load line with this inho-
mogeneous characteristic gives a second, now inhomoge-
neous, fixed points“I” in Fig. 1 d, which is a stable focus for
«,6.4. It corresponds to a current filament. If we simulate
the deterministic system with« just above the Hopf bifurca-
tion «Hopf<6.4 of the inhomogeneous fixed point, we can
determine the frequency of the limit cycle which is born out
of this bifurcation asfHopf=0.1674. Finally, the systems1d
has a stable homogeneous fixed point which is characterized
by negative voltageu and almost zero current densityk jl.
This point corresponds to the nonconducting regime of the
DBRT, which is beyond the scope of the present studyf18g.
In Fig. 2 one can see the rather rapid transition of the deter-
ministic system from the slightly perturbed homogeneous
fixed point sHd to the inhomogeneous filamentary onesId.
This illustrates that for the given parameters the only stable
solution, apart from a trivial, nonconducting fixed point, is
an inhomogeneous steady state.

In the following we will keep the spatially inhomoge-
neous random perturbations of the variablea fixed at a small
noise intensity ofDa=0.001 and investigate the behavior of
the system under variation of the noise intensityDu. Note
that this noise term does not have any space-dependent in-
fluence upona. Now we initialize the system at the inhomo-
geneous fixed point and simulate it with different noise in-

FIG. 1. Current-voltage characteristic of the DBRT model given
in Eq. s1d. The three lines are the null isoclines for the dynamical
variablesu swhich is the load line, dash-dottedd anda in the case of
a homogeneousasxd ssolidd and in the case of inhomogeneousasxd
sdottedd. I and H mark the inhomogeneous and the homogeneous
fixed points of the system, respectively.U0=−84.2895,r =−35.

FIG. 2. Transition from the homogeneous initial state to the
spatially inhomogeneous fixed point due to a small spatially inho-
mogeneous perturbation in the noise-free case.sad Charge carrier
density distributionasx,td. sbd Time seriesvstd sdashedd and ustd
ssolidd. At t=0 the system is prepared in the homogeneous fixed
point us0d=266.47,asx,0d=10.02 with a very small initial random
perturbationsDa=0.001d. System parameters:U0=−84.2895,r =
−35, «=6.2, Da=Du=0.
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tensitiesDu. The results can be seen in Figs. 3–5, where the
upper panels illustrate the spatiotemporal dynamics and the
lower panels show the oscillations of two global quantities,
i.e., the voltage across the deviceustd and theabsolute spa-
tial variation vstd of asx,td defined by

vstd ; E
0

L U ]asx,td
]x

Udx. s3d

While for small noise the system exhibits rather small oscil-
lations around the inhomogeneous fixed pointsFig. 3d, with
increasing noise intensity a transition to completely homoge-
neous oscillations occurssFig. 5d. For intermediate values of
Du one can see very nicely the competition between the in-
homogeneous and the spatially homogeneous modes, the
former one dominating in Fig. 4.

The behavior ofustd shows that for small noise intensity
sFig. 3d the oscillations of this variable look quite correlated,
and for large noise they behave very incoherently as ex-
pectedsFig. 5d. To illustrate this more clearly we calculate
the Fourier power spectral densities ofustd and of asx,td,
where the latter are taken at the two boundaries of the device
x=0 andx=L sFig. 6d. It is clearly seen that for small noise
the spectra have very pronounced peaksfFig. 6sadg which
indicates high correlation of the oscillations. As the noise

intensity increases the spectral peaks broaden, and thus the
correlation of the oscillations decreasesfFigs. 6sbd and 6scdg.

As one can observe from Fig. 6sad, the power spectral
density ofas0,td looks quite different from the one calcu-
lated for asL ,td. In particular, while the spectra ofasL ,td
contain only one pronounced peak, the spectra ofas0,td in-
clude several high-order harmonics. The explanation of this
fact can be obtained from Fig. 3. As one can see, while
asL ,td is following the dynamics ofustd, as0,td stays fixed

FIG. 3. Simulation of the DBRT withDu=0.1, Da=0.001, and
initial conditions chosen at the inhomogeneous fixed point. Other
parameters as in Fig. 2. Transients have been skipped. The upper
panel shows the spatiotemporal dynamics of the charge carrier den-
sity with the detailed dynamics ofas0,td shown in the inset; the
lower panel shows the time series of the voltage drop across the
device ustd and the absolute variationvstd of the charge carrier
densitysfor details see textd.

FIG. 4. Same as in Fig. 3 forDu=0.5.

FIG. 5. Same as in Fig. 3 forDu=2.0. Note the different scale
for vstd at the bottom.
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most of the time, occasionally performing spiking oscilla-
tions ssmall inset of Fig. 3d. Such a spiking oscillation gives
rise to higher harmonics in the spectra. With increasing noise
intensity the difference between both boundaries of the de-
vice vanishes since the distribution ofasx,td becomes more
and more homogeneous as we have seen before. In fact, in
Fig. 6scd the two corresponding curves can hardly be distin-
guished. We need to note that the peaks in the spectral power
densities of the dynamic variable not only get smeared out
with increasing noise but also shift toward higher frequen-
cies. In Fig. 7 the position of the main peak of the power
spectrum ofustd is plotted versus noise intensityDu. While
for relatively small noise strength the frequency of the noise

induced oscillation stays close to the frequencyfHopf it in-
creases with growing noise toward the frequencyfhom since
the system gets more and more driven into the completely
homogeneous state. Remember thatfHopf has been defined as
the frequency of the stable limit cycle, which would appear
out of our inhomogeneous fixed point for«=«Hopf in the
deterministic system.

Let us now quantify the spatial and the temporal ordering
of the system. We call the system spatially coherent if the
space dependent variableasx,td is uniformly distributed over
the whole length of the device, i.e.,asx,td=astd for all x
P f0,Lg at a particular timet. This we refer to as a homoge-
neous state. To reveal whether a particular state of the system
is spatially homogeneous or not we use, as a simple measure,
theabsolute variationvstd defined in Eq.s3d above. Accord-
ing to this definition a spatially homogeneous state of the
system is characterized byvstd=0. And the largervstd is, the
more incoherent in spacesthe more inhomogeneousd the sys-
tem appears.

The temporal ordering of the system, on the other hand,
can be measured by the correlation timef19g

tcor ;
1

s2E
0

`

uCssduds, s4d

where Cssd;kfustd−kulgfust+sd−kulglt is the autocorrela-
tion function of the variableustd ands2=Cs0d its variance.

By calculating the temporal mean values ofvstd for dif-
ferentDu we can characterize the shape of the dynamics in
dependence on the noise intensity. In Fig. 8sad these values
are plotted versus the noise intensity and one can see that the
mean value ofv monotonically tends toward zero with in-
creasing noise, indicating an increase in spatial coherence.
The error bars in this plot show the standard deviation. In
fact they reflect an essential feature of this transition, namely,
the competition between spatially inhomogeneous and ho-
mogeneous modes for intermediate values ofDu. The larger
the standard deviation ofv is, the more “mixed” the dynam-
ics appears. Figure 8sbd offers the same information showing
the variance ofv versusDu. For noise close to zero only
slight oscillations around the inhomogeneous fixed point
with almost fixed spatial profile ofasx,td lead to a vanish-
ingly small variance ofv. With increasing noise, more and
more frequently the system tends to a homogeneous state.
The variance exhibits a maximum aroundDu=1.3, indicating
maximum fluctuations of the system between homogeneous
and inhomogeneous modes. Thus, this value could be treated
as a boundary between predominantly filamentary and pre-
dominantly homogeneous behavior. For even larger noise in-
tensity the homogeneous mode is getting more and more
dominant and therefore the variance ofv again falls off to-
ward zero.

On the other hand, the correlation time versus noise in-
tensity in Fig. 8scd shows that the temporal coherence of the
system in contrast to the spatial ordering decreases rapidly
with increasing noise.

FIG. 6. sColor onlined Fourier power spectral density of the
dynamic variableustd and for asx,td at the boundariesx=0 andx
=L of the device. Parameters as in Figs. 3–5. Averages of 200 time
series of lengthT=2000 have been used.

FIG. 7. Frequency shift of the noise-induced oscillations in the
dependence on the noise intensityDu. fmax denotes the position of
the main peak of the Fourier power spectral density ofustd scf. Fig.
6d.
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III. CONCLUSION

We have investigated the complex spatiotemporal behav-
ior of the double barrier resonant tunneling diode just below
the Hopf bifurcation point under the influence of Gaussian
white noise.

We have shown that random fluctuations are able to in-
duce quite coherent oscillations of the current density in a
regime where the deterministic system exhibits a stable fixed
point. This extends the phenomena of noise-induced oscilla-
tions from purely time-dependent generic models, e.g.,f20g,
to space-time patterns. Moreover, we have shown that the
noise that is applied globally to a space-independent variable
determines the type of spatiotemporal pattern of these oscil-
lations. While for small noise intensity the system demon-
strates oscillations which are quite correlated in time, but
spatially inhomogeneous, with increasing noise intensity the
shape of the spatiotemporal pattern changes qualitatively un-
til the system reaches a highly homogeneous state. With this,
the increase of spatial coherence is accompanied by the de-
crease of temporal correlation of the observed oscillations. In
between these two situations for intermediate noise strength

one can observe complex spatiotemporal behavior resulting
from the competition between homogeneous and inhomoge-
neous oscillations.

Finally, we have examined the Fourier power spectral
density of the dynamical variables and shown that with
growing noise the main frequency of the oscillations shifts
from the Hopf frequency of the deterministically stable in-
homogeneous fixed point toward the frequency of the homo-
geneous fixed point. Hence we can conclude that to some
extent noise of a certain intensity can stabilize the homoge-
neous state.
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APPENDIX

The dimensionless voltage variablesu, U0 are scaled into
physical quantities by a factor of 0.35 mV. The electron den-
sity a is scaled by 1010 cm−2, current density j by
500 A cm−2, and the units of time and space correspond to
3.3 ps and 100 nm for typical device parameters at 4 Kf8g.

The effective diffusion coefficientDsad results from the
inhomogeneous lateral redistribution of carriers and from the
change in the local potential due to the charge accumulated
in the quantum well by Poisson’s equationf21g:

Dsad = aS d

rB
+

1

1 − exps− adD , sA1d

where rB=s4pee0"2d / se2md is the effective Bohr radius in
the semiconductor material,e and e0 are the relative and
absolute permittivity of the material, andd is the effective
thickness of the double barrier structure.

The functionf is obtained from microscopic consideration
of the tunneling currents from the emitter into the quantum
well and from there to the emitterf8g:

fsa,ud = H1

2
+

1

p
arctanF2

g
Sx0 −

u

2
+

d

rB
aDGJ

3HlnF1 + expShe − x0 +
u

2
−

d

rB
aDG − aJ − a.

sA2d

x0 andg describe the energy level and the broadening of the
electron states in the quantum well andhe is the dimension-
less Fermi level in the emitter, all in units ofkBT. Through-
out the paper we use values ofg=6, d/ rB=2, he=28, and
x0=114.

FIG. 8. Spatial and temporal ordering of the dynamics in depen-
dence on the noise intensityDu. sad Time average of the order
parametervstd defined in Eq.s3d; error bars correspond to the stan-
dard deviation.sbd Variance of the parameterv fcorresponding to
the square of the error bars fromsadg. scd Correlation timefEq. s4dg.
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