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Noise-induced pattern formation in a semiconductor nanostructure
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We investigate the influence of noise upon the dynamics of the current density distribution in a model of a
semiconductor nanostructure, namely, a double barrier resonant tunneling diode. We fix the parameters of the
device below the Hopf bifurcation, where the only stable state of the system is a spatially inhomogeneous
“filamentary” steady state. We show that the addition of weak Gaussian white noise to the system gives rise to
spatially inhomogeneous oscillations that can be quite coherent. As the noise intensity grows, the oscillations
tend to become more and more spatially homogeneous, while simultaneously the temporal correlation of the
oscillations decreases. Thus, while on one hand noise destroys temporal coherence, on the other hand it
enhances the spatial coherence of the current density pattern.
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I. INTRODUCTION presented in Sec. Il. Conclusions are drawn in Sec. lll. In the

i ) . Appendix some details of the model equations are given.
During recent years the double barrier resonant tunneling

diode (DBRT) has become an object of great research inter-
est[1]. It was shown that charge accumulation in such a
semiconductor nanostructure provides an electrostatic feed-
back that, together with resonant tunneling through the en- Since the measurement of the local current density distri-
ergy barriers, induces strongly nonlinear Z-shaped currentsution in real devices is technically a very complicated task,
voltage characteristick2]. From a practical point of view, the mathematical modeling still remains one of the basic
the latter makes the DBRT promising for applications as anethods to study pattern formation involving the charge car-
key element of powerful semiconductor microwave generarier dynamics in semiconductor nanostructures. For this pur-
tors. The characteristic feature of the DBRT is intrinsic bi- pose we use a model for the DBRT suggeste[Birand add
stability [2], i.e., for a range of voltages it depends upon thetwo sources of random fluctuations:

initial conditions whether a state of high or low current den-

Il. PATTERN FORMATION IN THE NOISY
DBRT MODEL

sity is observed. Such a bistability creates unique conditions da(x,t) =f(a,u) + i(D(a)&_a> +D,&(x,1)
for a variety of interesting phenomena, including lateral spa- at ’ IX X amm
tiotemporal pattern formation of the current dengidx10].

This makes the study of the DBRT very attractive also from au(t)

the viewpoint of nonlinear dynamics. While the general im- Up=u=r(j)+Dyn(t). (1)
portance of noise is well knowfl1], the effects of noise
upon the spatiotemporal dynamics of the current density pafAll quantities in this model are dimensionless. In terms of
terns have been less studied. nonlinear dynamics, this is a reaction-diffusion model of
In reality any process is inevitably influenced by randomactivator-inhibitor type, whera is the activator and is the
fluctuations. For a long time it was widely believed that theinhibitor. The dynamical variabla(x,t) describes the charge
effect of noise is only destructive, smearing out any detercarrier density inside the quantum well, which depends on
ministic dynamics. However, recently noise has been foundime and space. The second variab(® is the voltage drop
to evoke a very nontrivial, constructive response in nonlineaeacross the device and depends only on time. The nonlinear
systems. It was shown, for instance, that random fluctuationfunction f models the net tunneling rate of the electrons
are able to induce quite coherent patterns in extended medifrough the two energy barriers into and out of the quantum
[12], to maintain existing patterr{d3], and even to support well, andD(a) is the effective diffusion coefficient, describ-
wave propagatiofl14]. Although noise-induced phenomena ing the diffusion of the electrons within the quantum well
were also found in semiconductor lasgt5,16, the effect of  along the x-direction perpendicular to the current flow,
noise on charge transport in semiconductors is still an opeﬂa1u):%[f(a,u)+23] describes the local current density in
question. The aim of the present work is to study how noisghe device and(j)=(1/L)J5j dx gives the total current
can influence current density patterns in a semlconductqrhrough the device. The system is assumed to satisfy Neu-

nanostructure, namely, the DBRT. . mann boundary conditions and its width is fixed at a value of
The paper has the following structure. After this introduc-| —34 The first Eq(1) is the local balance equation of the

tion the DBRT model and the results of our simulations al€harge in the quantum well, and the second equation repre-

sents Kirchhoff's law of the circuit in which the device is
operated. The external bias voltagh, the dimensionless
*Electronic address: schoell@physik.tu-berlin.de load resistance, and the time-scale ratio of the dynamics

ot
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FIG. 1. Current-voltage characteristic of the DBRT model given

in Eqg. (1). The three lines are the null isoclines for the dynamical ' u(®) 11
variablesu (which is the load line, dash-dottednda in the case of 265
a homogeneoua(x) (solid) and in the case of inhomogenea(s) AL L i

(dotted. | and H mark the inhomogeneous and the homogeneous 0 100 200
fixed points of the system, respectivelyy=—-84.2895,r =—35. (b) 1

of u anda are parameters; plays the role of a bifurcation FIG. 2. Transition from the homogeneous initial state to the

parameter which determines the stability of the fixed point$Patially inhomogeneous fixed point due to a small spatially inho-
mogeneous perturbation in the noise-free céaaeCharge carrier

Lr;;?s?[zasg:égrm;noc]j. tl:r)lzy;;;raalll?gf C:pcgcﬁ‘;glgftiﬁ;oatt?aeclﬁsg density distributiona(x,t). (b) Time seriesv(t) (dashed and u(t)

T T . . . (solid). At t=0 the system is prepared in the homogeneous fixed
circutt, normahze.d by the tunneling time,. The ex_pI|C|t point u(0)=266.47,a(x,0)=10.02 with a very small initial random
form of the functionsf(a,u) and D(a) can be found in the perturbation(D,=0.000. System parameterd)o=—84.2895,r=
Appendix, and a discussion of the various deterministic bi'—35,s=6.2,Daa=Du=0. '
furcation scenarios is given i8,10].

Here we want to investigate the system under the influ=0 2639 at:=6.2, in the complete space-dependent system
ence of noise. For this purpose we have added the two noisg) this fixed point isnot stable but still corresponds to a
termSDag(X,t) and Du’)?(t), WhereDa and Du define the noise homogeneous Steady state.

intensities in the corresponding variables ahdnd 7 are If we drop the condition of space independence and return
uncorrelated Gaussian white noise sources: to the original full system, the additional null isoclirae=0
(Ex D))= (nt)=0 (xe[0,L]), with inhomogeneousi(x,t) can be calculated numerically.
Once again the intersection of the load line with this inho-
(EXDEX 1)) = S(x—Xx)dt—t), mogeneous characteristic gives a second, now inhomoge-

neous, fixed point‘l” in Fig. 1), which is a stable focus for
() 7(t")) = st-t'). 2) e<6.4. 1t qorrgsponds to a cyrrent filament. If we :'simulate

the deterministic system with just above the Hopf bifurca-
The term D,7(t) represents noise in the applied voltage,tion &,,,~6.4 of the inhomogeneous fixed point, we can
whereasD.&(x,t) describes fluctuations of the local current determine the frequency of the limit cycle which is born out
density which could be caused by effective contributionsof this bifurcation asf;,,=0.1674. Finally, the systertt)
e.g., of thermal fluctuations and shot noj4¢]. has a stable homogeneous fixed point which is characterized

First consider the noise-free cadg=D,=0. For this pur- by negative voltagas and almost zero current density).

pose we fixe=6.2 slightly below the Hopf bifurcation, This point corresponds to the nonconducting regime of the
which occurs at:=6.4. In Fig. 1 the null isoclines of the DBRT, which is beyond the scope of the present stiiB).
system are plotted in the current-voltage projection of then Fig. 2 one can see the rather rapid transition of the deter-
originally infinite-dimensional phase space. If the system isministic system from the slightly perturbed homogeneous
prepared in a completely homogeneous initial s&@te0)  fixed point (H) to the inhomogeneous filamentary ofi¢.
=3y and no spatially inhomogeneous fluctuations are takefThis illustrates that for the given parameters the only stable
into account(D,=0) the system(1) loses its space depen- solution, apart from a trivial, nonconducting fixed point, is
dence and can be reduced to a set of two ordinary differentiagdn inhomogeneous steady state.

equations for which the null isocline=0 under this homo- In the following we will keep the spatially inhomoge-
geneous condition can be calculated analytically from theneous random perturbations of the variabliixed at a small
zeros of f(a,u). The intersection with the load linénull noise intensity ofD,=0.001 and investigate the behavior of

isocline u=0) determines the homogeneous fixed pointthe system under variation of the noise intendity. Note
marked “H” in Fig. 1. Although linear stability analysis for that this noise term does not have any space-dependent in-
this reduced system tells us that this is a stable focus for thBuence upora. Now we initialize the system at the inhomo-
parameters chosen and<16.6 with frequency f,,,  geneous fixed point and simulate it with different noise in-
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FIG. 3. Simulation of the DBRT wittD,=0.1,D,=0.001, and  intensity increases the spectral peaks broaden, and thus the
initial conditions chosen at the inhomogeneous fixed point. Otheforrelation of the oscillations decreagésgs. 6b) and c)].
parameters as in Fig. 2. Transients have been skipped. The upper As one can observe from Fig(&, the power spectral
panel shows the spatiotemporal dynamics of the charge carrier dedensity ofa(0,t) looks quite different from the one calcu-
sity with the detailed dynamics af(0,t) shown in the inset; the lated for a(L,t). In particular, while the spectra af(L,t)
lower panel shows the time series of the voltage drop across thgontain only one pronounced peak, the spectra(6ft) in-
device u(t) and the absolute variation(t) of the charge carrier clude several high-order harmonics. The explanation of this
density (for details see text fact can be obtained from Fig. 3. As one can see, while

a(L,t) is following the dynamics ofi(t), a(0,t) stays fixed
tensitiesD,. The results can be seen in Figs. 3-5, where the
upper panels illustrate the spatiotemporal dynamics and the D,=20
lower panels show the oscillations of two global quantities,
i.e., the voltage across the devigé) and theabsolute spa- 11
tial variation v(t) of a(x,t) defined by

2 9
L ga(xt) s 7
v(t) = J —|dx. )
o | X

300

While for small noise the system exhibits rather small oscil-
lations around the inhomogeneous fixed pdkig. 3), with 269

increasing noise intensity a transition to completely homoge-

neous oscillations occuf§ig. 5). For intermediate values of N 267

D, one can see very nicely the competition between the in- X 265

homogeneous and the spatially homogeneous modes, the

former one dominating in Fig. 4. 1
The behavior olu(t) shows that for small noise intensity

(Fig. 3 the oscillations of this variable look quite correlated, 0.75 - T

and for large noise they behave very incoherently as ex- ¥ 05 T

263

pected(Fig. 5. To illustrate this more clearly we calculate 025 F .

the Fourier power spectral densities wft) and of a(x,t), 0

where the latter are taken at the two boundaries of the device 300 320 340, 360 380 400
x=0 andx=L (Fig. 6). It is clearly seen that for small noise

the spectra have very pronounced pefikig. 6(a)] which FIG. 5. Same as in Fig. 3 fdp,=2.0. Note the different scale

indicates high correlation of the oscillations. As the noisefor v(t) at the bottom.
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induced oscillation stays close to the frequerigyy it in-
creases with growing noise toward the frequefgy, since

the system gets more and more driven into the completely
homogeneous state. Remember thgat; has been defined as
the frequency of the stable limit cycle, which would appear
out of our inhomogeneous fixed point fe=egyq, in the
deterministic system.

Let us now quantify the spatial and the temporal ordering
of the system. We call the system spatially coherent if the
space dependent varialdéx, t) is uniformly distributed over
the whole length of the device, i.ea(x,t)=a(t) for all x
e[0,L] at a particular time. This we refer to as a homoge-
neous state. To reveal whether a particular state of the system
is spatially homogeneous or not we use, as a simple measure,
the absolute variatiorv(t) defined in Eq(3) above. Accord-
ing to this definition a spatially homogeneous state of the
system is characterized hyt)=0. And the largeo(t) is, the
more incoherent in spadéhe more inhomogeneouthe sys-
tem appears.

The temporal ordering of the system, on the other hand,

-3 1 1 1 1 1 1 ]
10 ; ;
01 02 03 04 05 06 07 can be measured by the correlation tipd8]

() S

FIG. 6. (Color online Fourier power spectral density of the 1(”
dynamic variableu(t) and fora(x,t) at the boundarieg=0 andx teor= 0_2J |q’(5)|d5, (4)
=L of the device. Parameters as in Figs. 3-5. Averages of 200 time 0
series of lengthT=2000 have been used.

most of the time, occasionally performing spiking oscilla- where W(s)={[u(t) —(u][u(t+s)—(w]); is the autocorrela-
tions (small inset of Fig. 3 Such a spiking oscillation gives tion function of the variablei(t) and o2=¥(0) its variance.

rise to higher harmonics in the spectra. With increasing noise By calculating the temporal mean valuesugf) for dif-
intensity the difference between both boundaries of the deferentD, we can characterize the shape of the dynamics in
vice vanishes since the distribution afx,t) becomes more dependence on the noise intensity. In Fi¢g)&hese values
and more homogeneous as we have seen before. In fact, ére plotted versus the noise intensity and one can see that the
Fig. 6(c) the two corresponding curves can hardly be distin-mean value oy monotonically tends toward zero with in-
guished. We need to note that the peaks in the spectral powereasing noise, indicating an increase in spatial coherence.
densities of the dynamic variable not only get smeared ourhe error bars in this plot show the standard deviation. In
with increasing noise but also shift toward higher frequen-act they reflect an essential feature of this transition, namely,
cies. In Fig. 7 the position of the main peak of the powerthe competition between spatially inhomogeneous and ho-
spectrum ofu(t) is plotted versus noise intensify,. While  mogeneous modes for intermediate value®gf The larger

for relatively small noise strength the frequency of the noisethe standard deviation af is, the more “mixed” the dynam-

ics appears. Figure(B) offers the same information showing

Jhom ' ' ' the variance ofv versusD,. For noise close to zero only
slight oscillations around the inhomogeneous fixed point
024 + 4 with almost fixed spatial profile o&(x,t) lead to a vanish-
ingly small variance ob. With increasing noise, more and
5 0.22 more frequently the system tends to a homogeneous state.
w3 The variance exhibits a maximum arouDg=1.3, indicating
0.2 maximum fluctuations of the system between homogeneous
and inhomogeneous modes. Thus, this value could be treated
0.18 as a boundary between predominantly filamentary and pre-
Setopt | . . . dominantly homogeneous behavior. For even larger noise in-
0 05 1 15 5 tensity the homogeneous mode is getting more and more
D, dominant and therefore the variancewfgain falls off to-
ward zero.

FIG. 7. Frequency shift of the noise-induced oscillations in the ~ On the other hand, the correlation time versus noise in-
dependence on the noise intendily. f.., denotes the position of tensity in Fig. &) shows that the temporal coherence of the
the main peak of the Fourier power spectral density(of (cf. Fig.  System in contrast to the spatial ordering decreases rapidly
6). with increasing noise.
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3 one can observe complex spatiotemporal behavior resulting
from the competition between homogeneous and inhomoge-
2 neous oscillations.
2 Finally, we have examined the Fourier power spectral
1 density of the dynamical variables and shown that with
growing noise the main frequency of the oscillations shifts
(@ o from the Hopf frequency of the deterministically stable in-
: : : homogeneous fixed point toward the frequency of the homo-
1k ] geneous fixed point. Hence we can conclude that to some
extent noise of a certain intensity can stabilize the homoge-
2 neous state.
‘§ 05 F
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3 APPENDIX
10 r ’ The dimensionless voltage variablesU, are scaled into
0 ! . ! g physical quantities by a factor of 0.35 mV. The electron den-
0 0.5 1 15 2 sity a is scaled by 1¥cm™, current densityj by
(© D, 500 A cni?, and the units of time and space correspond to

_ _ o 3.3 ps and 100 nm for typical device parameters at @BK
FIG. 8. Spatial and temporal ordering of the dynamics in depen-  The effective diffusion coefficienb(a) results from the
dence on the noise intensify,. (a) Time average of the order j,n0mageneous lateral redistribution of carriers and from the

ggig'g‘ztvﬁ;t(gndﬁ)‘;in\?:rig'nfg(gf);tﬁg(gaez::e‘ig;r[iz‘i?;sdpgongi'ﬁgsﬁn' change in the local potential due to the charge accumulated
the square of the error bars frai@ ]. (c) Correlation timd Eq. (4)]. in the quantum well by Poisson's equatifizi]

d 1
IIl. CONCLUSION D(a) = a(‘ + —> : (A1)

rg 1-exg-a)
~ We have investigated the complex spatiotemporal beha‘ﬂivhererB=(47reeOh2)/(e2m) is the effective Bohr radius in
lor of the dpuble parrler. resonant tunnel|ng diode just bel'o he semiconductor materiag and €, are the relative and
the_ Hopf_ bifurcation point under the influence of Gaussian, <\ te permittivity of the material, ardlis the effective
Wh\'/t\? Noise. . ._thickness of the double barrier structure.

e have shown that random fluctuations are able to In- " fnctionf is obtained from microscopic consideration

duge quite coherent OSCi.""’.‘ti(.mS of the current density i.n f the tunneling currents from the emitter into the quantum
regime where the deterministic system exhibits a stable fixe ell and from there to the emittég];

point. This extends the phenomena of noise-induced oscilla-

tions from purely time-dependent generic models, ¢2f)], _J11 2 u d
to space-time patterns. Moreover, we have shown that the f(&Uu)= 5t arct 5y X~ 57F Ea

noise that is applied globally to a space-independent variable

de_termlnes _the type of spa_note.mporgl pattern of these oscil <3 In| 1+ exd 70— X+ = - —a) _at-a
lations. While for small noise intensity the system demon- 2 rg

strates oscillations which are quite correlated in time, but (A2)

spatially inhomogeneous, with increasing noise intensity the

shape of the spatiotemporal pattern changes qualitatively ung andy describe the energy level and the broadening of the
til the system reaches a highly homogeneous state. With thiglectron states in the quantum well anglis the dimension-
the increase of spatial coherence is accompanied by the dkess Fermi level in the emitter, all in units &ET. Through-
crease of temporal correlation of the observed oscillations. liout the paper we use values 96, d/rg=2, 7,=28, and
between these two situations for intermediate noise strengtky=114.
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